Competitive responses of selected species from a South African semi-arid savanna

Keletso Mopipi, K. Kirkman and C. D. Morris

INTRODUCTION

- Competition is important in both natural and agricultural plant communities.
- Botanical composition and productivity of any vegetation is largely determined by competitive interactions
- These also explain species' relative abundances in a given community, and may also explain the nature of forces that structure such a community

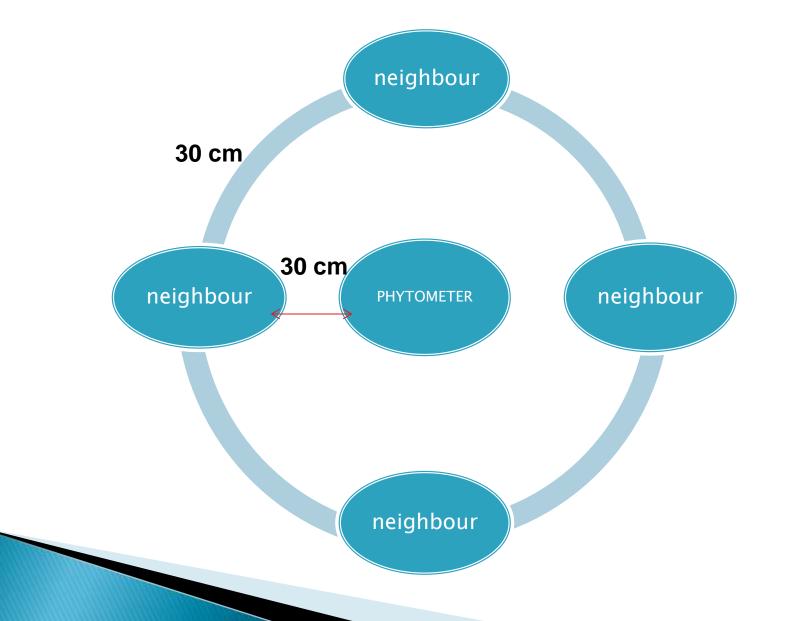
* 'Resource-use-type competition' has long been recognized as the 'dominant law of relationships'

cont..

 Competition is a result of plant density and size relative to available resources

- Habitat fertility and disturbance largely determine plant community organization, while competition determines species distribution and abundance along fertility gradients
- One of the problems facing farmers and range managers is compositional change & reduced productivity

 Studies of effect and responses attempt to explain these changes Rationale and Objectives
In the False Thornveld of the Eastern Cape, compositional change and bush encroachment are a problem


A study was conducted to investigate competitive interactions between selected species in a simulated non-selective grazing environment across a soil fertility gradient.

*Key question: How do disturbance and soil fertility affect competitive responses of these species?

METHODOLOGY

- Competitive responses of 8 species were investigated in an outdoor split-plot factorial experiment at Fort Hare farm.
- Cymbopogon plurinodis Digitaria eriantha, Eragrostis curvula, Melica decumbens, Panicum maximum, Sporobolus fimbriatus, Themeda triandra & Acacia karroo.
- Seedlings of phytometers were propagated in a glass house and transplanted onto 1m² plots. (*E. curvula* as neighbour)
- Competition intensity was used as whole-plot factor (3 levels), while clipping and soil fertility were sub-plot factors, each at 2 levels.
- Each was replicated 5 times in a randomised block design

Figure 1: Layout of the competition trial

Appearance of phytometer and 8 competitors at start of trial

Appearance of the competition trial just before harvest

Data analyses

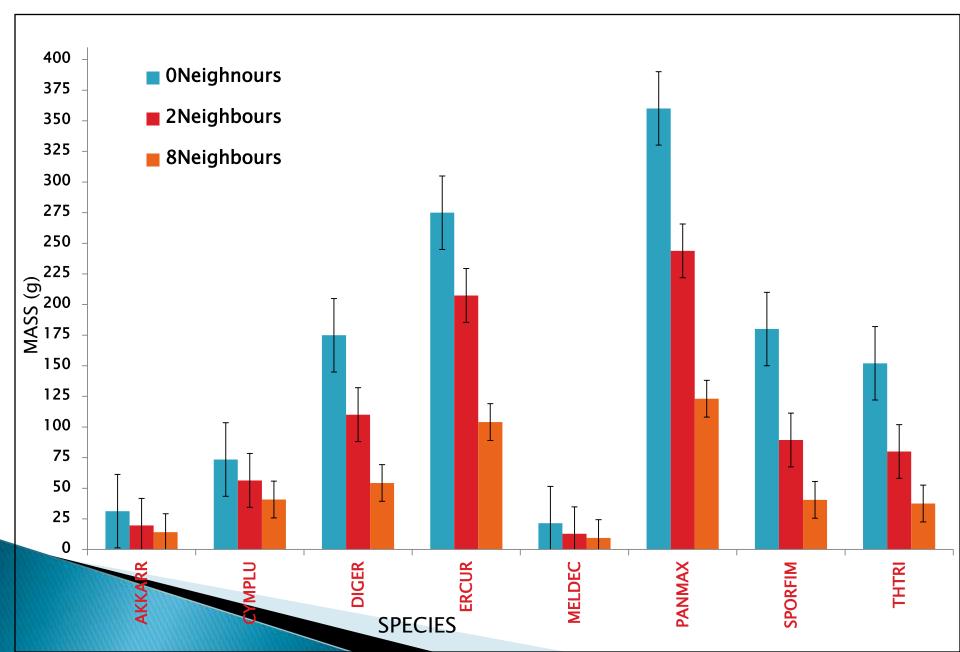
- All aboveground material was harvested, oven-dried and weighed after a full growing season (September to April)
- Competitive response was expressed as the natural logarithm of the relative biomass of a species grown with competition compared to its mass when grown without competition.
- * Treatment effects were tested using 3-way ANOVA, Tukey's test was used for mean pairwise comparisons at $\infty = 0.05$
- Relative Interaction Index for each species under different levels of competition, soil fertility and clipping was determined as:

$$\mathbf{Y} = \mathbf{X}_0 - \mathbf{X}_1 \div \mathbf{X}_0 + \mathbf{X}_1$$

Where: Y = Relative Interaction Index

 X_0 = species mass without competition

 X_1 = species mass with competition

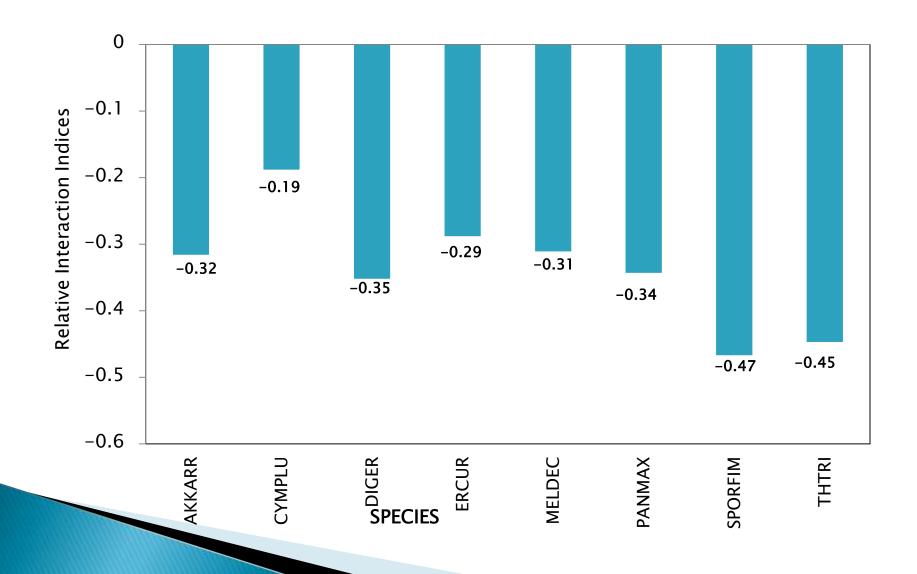

RESULTS

Competition intensity, soil fertility and clipping had significant effects on biomass production of the phytometers (p<0.05).</p>

 Competitive responses to these variables varied significantly between species (p<0.05)

All possible interactions were not significant (p>0.05).

Figure 2: Mean ±S.E. mass of the eight phytometer species for the main effect of competition


Table 1: Mean (log) mass per tuft phytometer species at different levels of clipping and fertility.

SPECIES	CLIPPING		FERTILITY	
	No clipping	Clipping	Low	High
Acacia karroo	1.40 ^b	1.23 ^b	1.32 ^b	1.31ª
Melica decumbens	1.19 ^a	1.09 ^a	1.11ª	1.67 ^b
Cymbopogon plurinodis	1.80 ^c	1.69 ^c	1.75 ^c	1.73 ^b
Themeda triandra	1.93 ^d	1.84 ^d	1.85 ^d	1.94 ^c
Sporobolus fimbriatus	2.01 ^e	1.87 ^d	1.93 ^e	1.95°
Eragrostis curvula	2.10 ^f	1.95 ^e	1.97 ^e	2.04 ^d
Digitaria eriantha	2.31 ^g	2.21 ^f	2.16 ^f	2.36 ^e
Panicum maximum	2.34 ^g	2.30 ^g	2.33 ^g	2.36 ^e

Species Relative Interaction Indices

- Relative Interaction Indices (RRI's) of the phytometers varied significantly between the competition intensities and fertility levels (p<0.01)
- Clipping, and all other possible interactions did not have significant effects on the RRI of the phytometer species (p>0.05).

Figure 3: Mean RII coefficients for phytometer species

Table 2: Mean RII at low & high fertility levels with 2 neighbours

SPECIES	High fertility	Low fertility
Acacia karroo	-0.22ª	-0.26ª
Melica decumbens	-0.17 ^a	-0.18 ^a
Cymbopogon plurinodis		
	-0.29 ^{ab}	-0.53 ^b
Themeda triandra	-0.20 ^a	-0.56 ^b
Sporobolus fimbriatus	-0.17ª	-0.31ª
Eragrostis curvula	-0.27 ^{ab}	-0.48 ^b
Digitaria eriantha	-0.35 ^b	-0.69 ^{bc}
Panicum maximum	-0.30 ^b	-0.61 ^b

Table 3: Mean RII at low & high fertility levels with 8 neighbours

Species	High Fertility	Low fertility
Acacia karroo	-0.24 ^{ab}	-0.55ª
Melica decumbens	-0.07 ^a	-0.33 ^b
Cymbopogon plurinodis	-0.15 ^{ab}	-0.49 ^{ab}
Themeda triandra	-0.09 ^a	-0.30 ^b
Sporobolus fimbriatus	-0.34 ^b	-0.42 ^{ab}
Eragrostis curvula	-0.14 ^a	-0.49 ^{ab}
Digitaria eriantha	-0.30 ^b	-0.55ª
Panicum maximum	-0.30 ^b	-0.57 ^a

DISCUSSION

- Increaser II and Decreaser species exhibited stronger responses interchangeably
- Increaser I species (*C. plurinodis & M. decumbens*) had the weakest competitive interaction
- Acacia karroo exhibited a stronger competitive interaction than the three weakest grass species
- Relative competition intensity was generally higher at higher density and fertility levels
- Clipping had less influence on competitive interactions
- Shifts in interactions occurred at different density and fertility levels

CONCLUSIONS

- Competitive interaction was demonstrated to various degrees as opposed to facilitation
- Pioneer species S. fimbriatus on strongest response and while sub-climax/climax C. plurinodis at the weakest interaction
- Fertility has more influence on competitive interactions than disturbance
 - Taller grass species performed much better in higher than lower fertility
- The study supports the 'resource pre-emption' model, which states that larger plants usurp resources at the expense of smaller plants-survival strategies/size
- Leguminous tree seedlings can compete stronger with grasses in poorer soils

ACKNOWLEGDEMENTS

- Nation Research Foundation
- GMRDC, UFH
- Dr Richard Fynn
- Mr Sibanga, Nyanga & Pepe at UFH
- Staff & students at Department of Livestock & Pasture Sciences, UFH
- Staff & students, Grassland Science, UKZN